

Erneuerbare Energie im Netz

November 2022, Netz NÖ GmbH

Unternehmensvorstellung Netz Niederösterreich GmbH

→ Verteilernetzbetreiber in NÖ mit ca. 1.200 Mitarbeitern

→ Stromnetz

- 1.418 km Hochspannungsleitungen
- 92 Umspannwerke
- 54.016 km Mittel- und Niederspannungsleitungen
- Ca. 844.000 Kundenanlagen

→ Gasnetz

- 2.194 km Hochdruckleitungen
- 11.688 km Mittel- und Niederdruckleitungen
- Ca. 292.000 Kundenanlagen

Anforderungen an ein modernes Stromnetz

Integration E-Mobilität

E-Mobilität sowie das intelligente Management erneuerbarer, volatiler Energieflüsse nehmen die zentrale Rolle im Netz ein

Dezentrale Einspeisung

Strom und Wärme werden zunehmend dezentral erzeugt, gespeichert und verbraucht sowie auf dieser Ebene optimiert

Datennetze und -Kommunikation

Neben den energiegetriebenen Themen wird auch die Vernetzung der Infrastruktur immer wichtiger und muss ebenfalls durch die NNÖ vorangetrieben werden

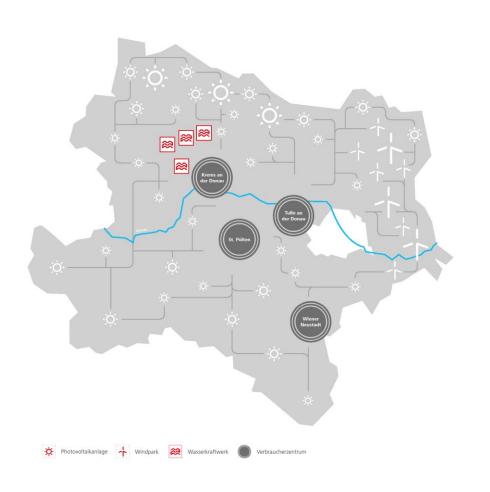
Netzsteuerung und Verstärkung

Sektorenkopplung und Demand Side Management sind wesentliche Blöcke zur Sicherstellung der Versorgungssicherheit in der Zukunft

Neue Lastflüsse

Immer mehr Kunden werden von reinen Verbraucher zum Prosumer und stellen damit neue Anforderungen an das Netz

Steigende Verbräuche


Die Wärmewende führt zu steigenden Verbräuchen getrieben durch den Ausbau von Wärmepumpen

Mehr Endkundeninteraktion

Die stärkere Integration des Verbrauchers in das Netz führt zu mehr Interaktion mit dem Kunden

Stromnetz im Wandel

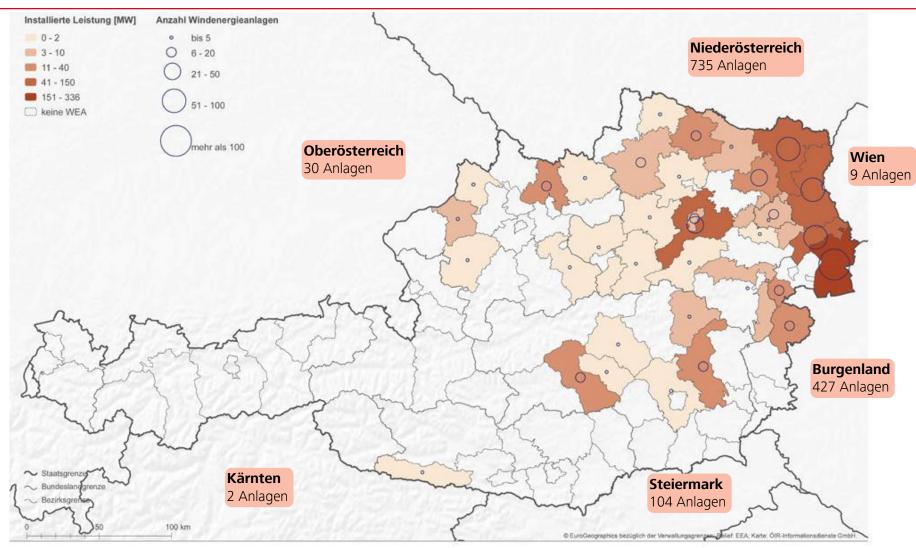
- → Historisch wurden Kraftwerke in der Nähe der Verbrauchszentren geplant und gebaut
 - Kurze, starke Leitungen vom Kraftwerk zu den Verbrauchern
 - Sehr gut ausgebautes Netz in der N\u00e4he der Verbrauchszentren und eher schwach ausgebautes Netz an den R\u00e4ndern des Netzgebiets
- → Durch die Energiewende werden viele kleine Kraftwerke an den Rändern des Netzes installiert
 - Diese wertvolle Energie muss dezentral aufgenommen werden und über ein starkes Leitungsnetz zu den Verbrauchern transportiert werden
- → Starke und intelligente Energienetze sind die Voraussetzung für die Energiezukunft

Rahmenbedingungen der Klima- und Energiestrategie 2030

Prognostizierter erforderlicher Zubau an Erneuerbarer Energie

+ 11–13 TWh + 1.100%

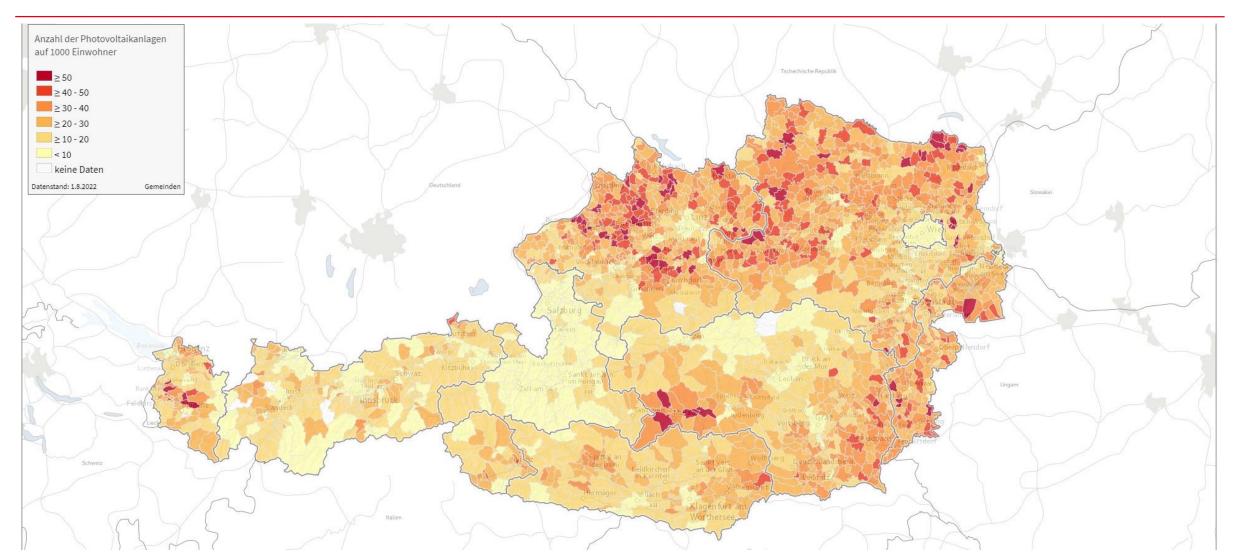
+ 11–13 TWh + 220%


+ 6–8 TWh + 15%

- → Ziele aus der Klima- und Energiestrategie bis 2030
 - Bezugsjahr 2018
 - Verzehnfachung der Energie aus Photovoltaik Anlagen
 - Verdoppelung der Windenergie
 - Umstieg auf e-Mobilität
 - "all-electricity" Wärmepumpe als Standardheizung
- → Die wertvolle Energie muss von den Erzeugern zu den Verbrauchszentren transportiert werden
 - Zusätzliche Investitionen in Netzinfrastruktur erforderlich
- → Netz NÖ ist für die Energiezukunft in der Rolle des "Ermöglicher"

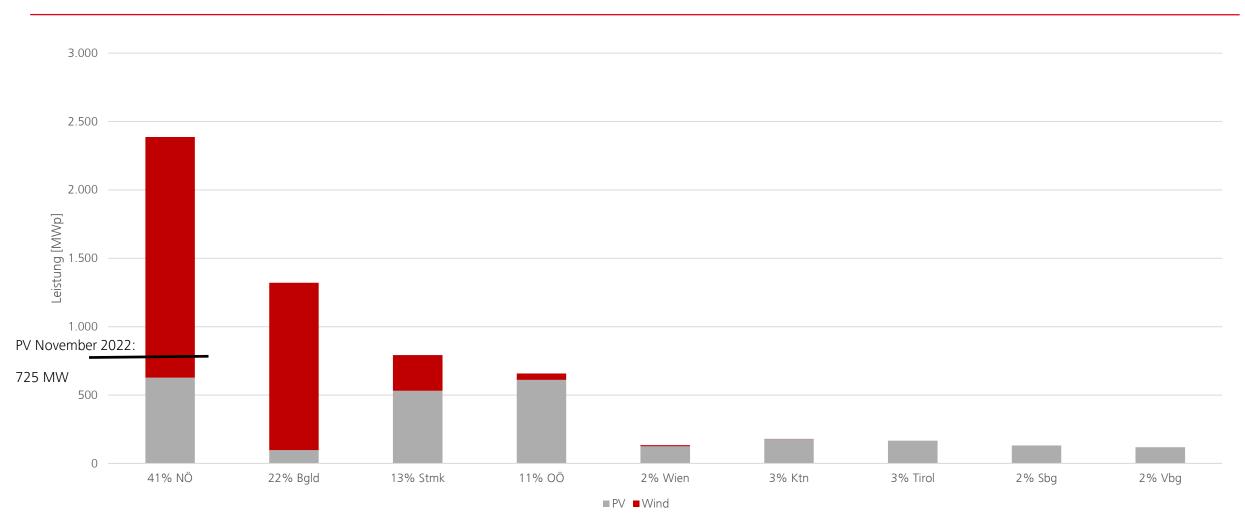
Quelle: Oesterreichs Energie 2018; Energieagentur Österreich 2018, TU Wien 2018 gemäß #mission2030 – Klima- und Energiestrategie der Bundesregierung

Windkraftanlagen in Österreich



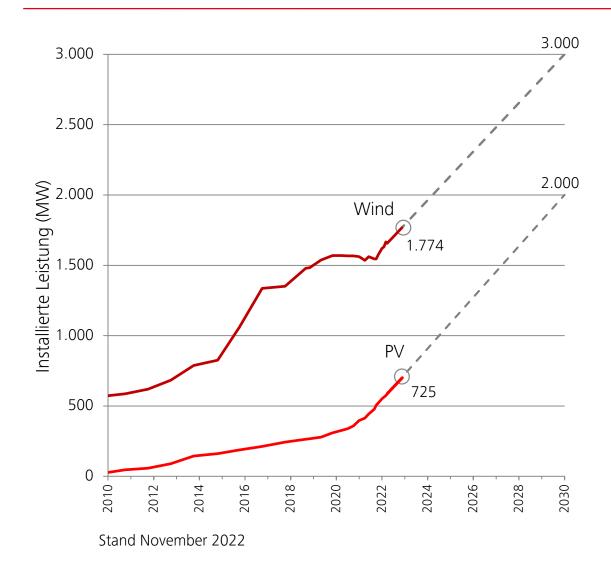
Quelle: IG-Windkraft, Anlagen: Jänner 2022 IG-Windkraft

Photovoltaikanlagen in Österreich



Quelle: Statistik Austria (1.8.2022)

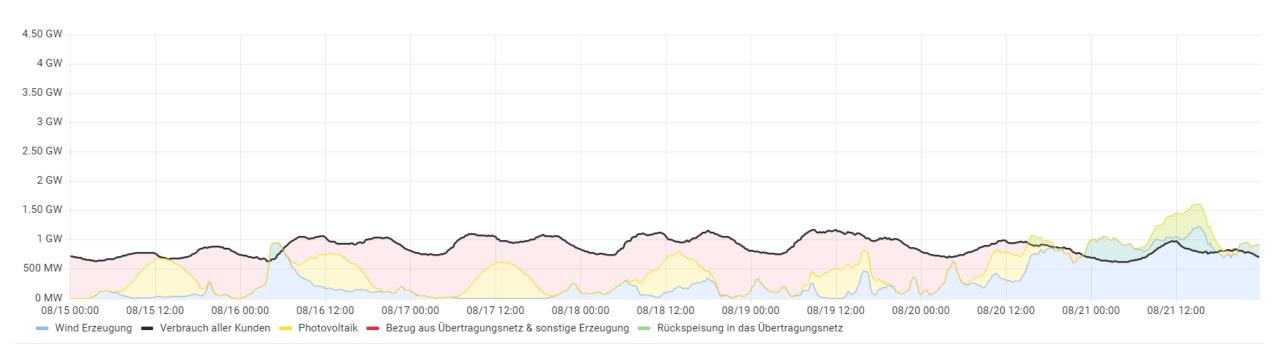
Übersicht installierte PV- und Wind-Leistung in Österreich



Datenstand: Ende 2021

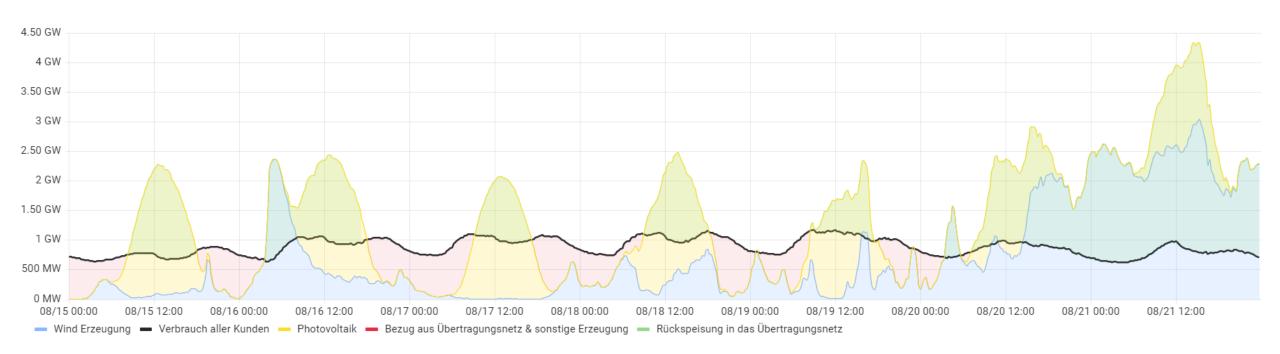
Entwicklung der installierten PV und Wind Leistung bei Netz NÖ

→ 1.774 MW Windleistung am Netz


- Installierte Windleistung in NÖ höher als in allen anderen acht Bundesländer zusammen
- Ca. 55 % der in Österreich installierten Leistung im Netzgebiet der Netz NÖ
- → 725 MW (ca. 60.500 Anlagen) Photovoltaik am Netz
 - Ca. 25 % der in Österreich installierten Leistung im Netzgebiet der Netz NÖ

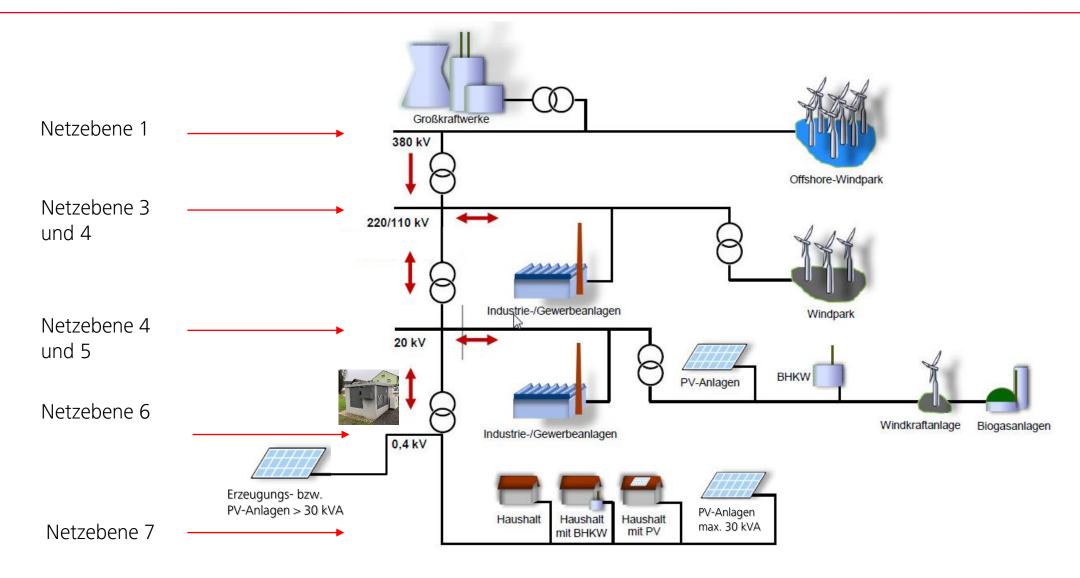
→ Aktuelle Entwicklung der PV Anfragen

- Im ersten Halbjahr 2022 wurden 1.200 MW angefragt
- Im Vergleich zum Jahr 2021 haben sich die Anfragen fast verdreifacht (ca. 25.000 Anfragen)


Erneuerbare Energie im Netz

Erneuerbare Energie im Netz – Prognose für das Jahr 2030

Investitionen in das Stromnetz



- → Verstärkte Netzdimensionierung aufgrund höheren Leistungsbedarfs
 - Aufgrund von PV, E-Mobilität und Wärmepumpen
 - Vorbereitung auf "All Electricity" Szenario
- → Investitionen in allen Netzebenen sind erforderlich
 - Schaffung von zusätzlichen Einspeisekapazitäten von ca. 3.000
 MW für PV und Winderzeugung im gesamten Netzgebiet
 - Erweiterung bzw. Neubau von etwa 40 Umspannwerken inkl.
 Anschlussleitungen bis 2030
 - Jährlicher Zubau von etwa 700 Transformatorstationen (langjähriger Schnitt etwa 300 Stationen)
 - Neuverlegung von ca. 500 km MS Erdkabelleitungen pro Jahr (2018: 280 km)
 - Umsetzung hängt sehr stark von externen Parametern ab, z.b.:
 Förderstruktur, Widmungsgrößen, Anlagenpreise,
 Energiepreise

Ökostrom-Anlagen Netzebenen

Gesetzliche Kostenregelungen für den Anschluss von Erzeugungsanlagen

Anlagengröße	Netzzutrittsentgelt
0 bis 20 kW	10 €/kW ¹⁾
21 bis 250 kW	15 €/kW
251 bis 1.000 kW	35 €/kW
1.001 bis 20.000 kW	50 €/kW
Mehr als 20.000 kW	70 €/kW

¹⁾ Gegenrechnung der Bezugsleistung bei PV-Anlagen Beträge exkl. MwSt.

→ Ablauf beim Anschluss

- Anlage wird über das Portal durch Kunde oder Elektriker gemeldet (Grundstück, Leistung, Anlagentyp,...)
- Netzrückwirkungen werden berechnet
- Netzanschlusspunkt wird festgelegt
- Falls erforderlich werden Netz-Baumaßnahmen festgelegt und kalkuliert
 → Kosten pro Kilowatt werden berechnet

→ Was kostet der Anschluss?

- Netzwirksame Bemessungsleistung (Rückspeiseleistung) wird mit dem jeweiligen Kostensatz multipliziert
- Übersteigen die Ausbaukosten 175 €/kW, wird der Mehrbetrag verrechnet
- Kosten für den Anschluss der Bezugsanlage ist davon unabhängig und wird extra verrechnet.

Erzeugungsanlagen bis 20 kVA Dachflächenanlagen

- → Ca. 96 % der Anfragen sind in dieser Größenordnung
- → Meldung an Netz NÖ über Homepage
 - Netzzugangsvertrag binnen 72 h inkl. aller notwendigen Daten für das Förderansuchen
 - Bei Erzeugungsanlagen größer 15 kVA Umstellung auf Leistungsmessung
- → Netzzutrittsentgelt 10 € pro kW
 - Bereits abgegoltene Bezugsleistung wird berücksichtigt
- → Eventuell notwendiger Verteilnetzausbau i.d. Regel durch Netz NÖ

Beispiele Anlagen bis 20 kW

→ Bestehender Hausanschluss

- Bezug Absicherungstarif 4 kW
- PV-Anlage mit 15 kW geplant
- Netzzutrittsentgelt für Einspeisung (15 kW 4 kW) x 10 €/kW = € 110,-
- Summe € 110,-

→ Neues Einfamilienhaus

- Bezug Absicherungstarif 4 kW
- Netzzutrittsentgelt € 1.336,-, Netzbereitstellungsentgelt 4 kW x 210,65 €/kW = € 842,60
- PV-Anlage mit 15 kW
- Netzzutrittsentgelt für Einspeisung (15 kW 4 kW) x 10 €/kW = € 110,-
- Summe € 2.288,60

Erzeugungsanlagen zwischen 21 kVA und 1.000 kVA Anlagen auf größeren Dachflächen (Hallen) oder Freifläche

→ Netzanschlusspunkt

- Bis 30 kVA ist ein Anschluss im Ortsnetz möglich
- Bis 500 kVA i.d.R. in der TST (400V)
- Ab 501 kVA i.d.R. im Mittelspannungsnetz (20kV)
- Netzzutrittsentgelt 15 € pro kW bzw. 35 € pro kW (ab 251 kW)
 - Voraussetzung: freie TST und MS Netz Kapazitäten
 - Eventuell notwendiger Netzausbau durch Netz NÖ
 - Sollten die dadurch entstehenden Kosten 175 € pro kW
 übersteigen, wird der Mehrbetrag dem Netznutzer verrechnet

Beispiel Überschuss-Einspeiser mit 120 kW

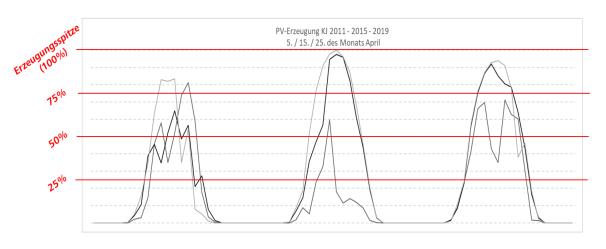
- → Bestehender Hausanschluss am Ortsnetz
- → Neuer Anschlusspunkt in bestehender Trafostation mit ausreichend Kapazität
- → Kunde verlegt Hausanschlusskabel von Anlage zur Trafostation
- → Kosten Netzanschluss an bestehender Trafostation
 - Bezug Netzzutrittsentgelt € 1.336,-
 - PV-Anlage mit 120 kW
 - Netzzutrittsentgelt für Einspeisung 120 kW x 15 €/kW = € 1.800,-
 - Summe € 3.136,-

Beispiel neue Bezugsanlage und 120 kW-PV-Anlage

- → Keine Trafostation in der Nähe
- → Trafostation wird für Anschluss neu errichtet
- → Kunde verlegt Hausanschlusskabel von Anlage zur Trafostation
- → Kosten Trafostation mit Einschleifung in das Mittelspannungsnetz z.B. € 60.000,-
 - → Errichtungskosten € 60.000 / 120 kW = 500 €/kW
- → Kosten Netzanschluss an neuer Trafostation
 - PV-Anlage mit 120 kW
 - Netzzutrittsentgelt 120 kW x 15 €/kW = € 1.800,-
 - Netzzutrittsentgelt 120 kW x (500 175) €/kW = € 39.000,-
 - Summe Netzzutrittsentgelt € 40.800,-

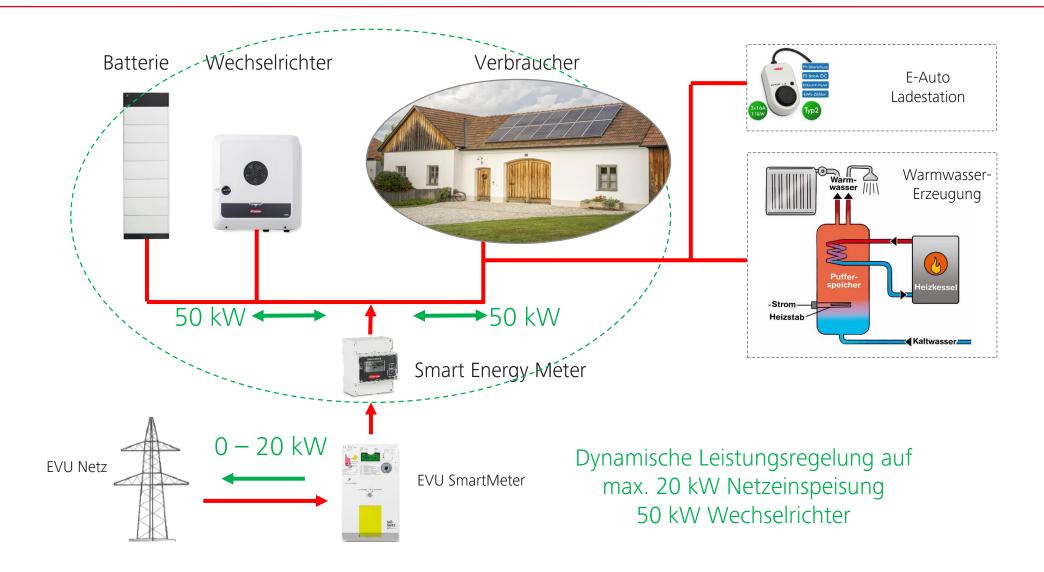
Anm.: Bezugsanlage wird separat verrechnet. Kosten abhängig von benötigter Leistung.

Großanlagen über 1000 kVA Windparks oder großflächige PV



- → Darstellung der freien Kapazitäten auf der Netz NÖ Homepage
- → Anlagengröße erfordert i.d.R. Anschluss im Umspannwerk
 - Kapazitäten im MS-Netz werden gleichmäßiger verteilt
- → Netzzutrittsentgelt 50 bzw. 70 € pro kW
 - Voraussetzung: freie UW und HS-Netz Kapazitäten
 - Eventuell notwendiger Netzausbau durch Netz NÖ
 - Sollten die dadurch entstehenden Kosten 175 € pro kW übersteigen, kann dieser Mehrbetrag dem Netznutzer verrechnet werden

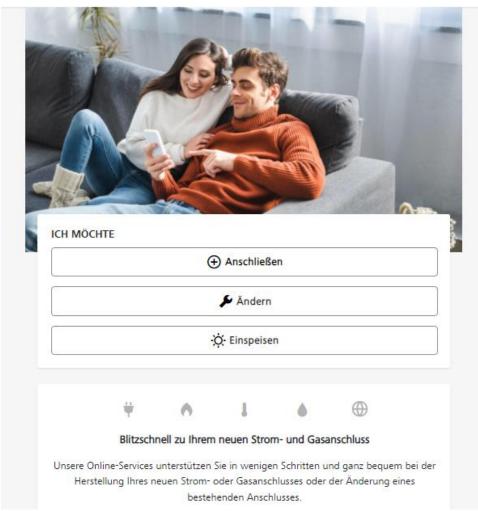
Dynamische Leistungsregelung Vorteile


- 1. 0% 25% Erzeugungsleistung → 50% Energiemenge.
- 2. 25% 50% Leistung → weitere 30% Energiemenge.
- 3. 50% 75% Leistung → weitere 15% Energiemenge.
- 4. Max. 5% der erzeugten Jahresenergiemenge werden im Leistungsbereich zw. 75% und 100% der installierten Leistung erzeugt.

→ Vorteile:

- Dynamische Leistungsregelung ermöglicht mehr Anlagen im Netz
- In Folge steht deutlich mehr Energie für Kunden und Netz zur Verfügung
- Bei Überschussanlagen mit hohem Eigenverbrauch meist geringer oder gar kein Jahresverlust
- Batteriespeicheranlagen für Eigenverbrauchsoptimierung reduzieren Ertragsverluste gegen Null
- Bei nicht optimaler Süd-Ausrichtung (z.B. Ost-West) noch bessere Jahreserträge trotz dynamischer Leistungsregelung

Dynamische Leistungsregelung Systemaufbau



Digitales Netz Partner Portal Von der Anfrage zum Netzzugangsvertrag

Online Services

- → Ablauf Netzanschluss: von der Anfrage zum Netzzugangsvertrag
 - Kunde oder Elektriker können Anfrage digital über das Netz Partner Portal stellen
 - Netz NÖ klärt mit dem Elektriker oder Elektroplaner die technischen Details der geplanten Anlage
 - Netz NÖ führt die technische Beurteilung (Netzberechnung) der Anlage durch
 - Bei Kleinanlagen (bis 20 kW) bekommt der Kunde i.d.R.
 binnen 72 h sein Netzzugangsvertragsangebot
 - Bei größeren Anlagen bekommt der Kunde auf Wunsch vorab die Zählpunktnummer und seinen individuellen Netzzugangsvertrag
- → Ca. 1.700 Elektriker sind für das Netz Partner Portal registriert
 - Pro Monat ca. 1.300 Tickets zum Thema Neuanschluss
 - Pro Monat ca. 4.000 Anträge für Erzeugungsanlagen

Ansprechpartner

- → Netz Niederösterreich Service Telefon
 - info@netz-noe.at oder 02236 201 2070
- → Zentrale Beantwortung von technischen Fragen zu Einspeiseanlagen
 - einspeiser@netz-noe.at
- → Detaillierte Informationen über Ökostromanlagen auf der Netz NÖ Homepage
 - <u>https://www.netz-noe.at/Netz-</u><u>Niederosterreich/Service/Okostromanlage-Portal.aspx</u>
 - Darstellung der freien Kapazitäten pro Umspannwerk
- → 26 regionale Service Center in NÖ
 - Planung, Bau und Betriebsführung
 - Störungsbehebung